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ABSTRACT: We study several aspects of generalized Janus configuration, which includes a
theta term. We investigate the vacuum structure of the theory and find that unlike the
Janus configuration without theta term there is no nontrivial vacuum. We also discuss
BPS soliton configuration both by supersymmetry analysis and from energy functional.
The half BPS configurations could be realized by introducing transverse (p,q)-strings in
original brane configuration corresponding to generalized Janus configuration. It turns out
the BPS soliton could be taken as modified dyon. We discuss the solution of half BPS
equations for the sharp interface case. Moreover we construct less supersymmetric Janus
configuration with theta term.
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1. Introduction

Janus configuration is a kind of field theory with spatially dependent coupling constant.
Its discovery was motivated by the attempt of generalizing AdS/CFT correspondence []
to the case with spatially varying dilaton. The original Janus supergravity solutions is an
one-parameter family solutions of dilatonic deformation of AdSs, which breaks all super-
symmetry but preserves full R-symmetry [[]. Later on , the other cases preserving part
of R-symmetry and supersymmetry were discovered [J—[]. Especially, the half BPS Janus
solutions with global symmetry OSP(4|4) were discovered []-f. The dual gauge theories
of the Janus solutions are supersymmetric deformations of N = 4 super Yang-Mills theory
with coupling constant depending on one spatial coordinate [, f[j.! Some properties of
half supersymmeric Janus Yang-Mills theory including vacuum structure and BPS config-
uration were discussed in [[1]]. For the vacuum structure, it was found that except for
the ordinary Coulomb phase where the scalars are homogenous and diagonal, there are
additional vacuum structure characterized by Nahm equations. The BPS configurations
of supersymmetric Janus field theory include 1/2 BPS magnetic monopole and 1/4 BPS
dyonic monopole.

However all of the above Janus field theory do not contain a theta term. This sounds
strange since one can obtain Janus solution in Type IIB supergravity with both dilaton
and axion through an SL(2, R) transformation. Recently, this puzzle was solved. In [[2],
the authors obtained generalized Janus configuration with spatially varying theta angle.
The global symmetry is still OSP(4[4) but its embedding in PSU(4|4) is inequivalent
to the one in Janus configuration without #-term. In order to make the 6 depend on one

'For a field theory with coupling constant depending on a lightlike coordinates and its AdS/CFT corre-
spondence, see [E]



spatial coordinate, the embedding must also depend on the spatial coordinate. On the other
hand, Janus configuration is closely related to the field theory with boundary [[L3, [4]. This
could be seen from the realization of half-supersymmetric Janus by brane configuration.
The corresponding brane configuration is N D3-branes ending on k successive five branes.
The limit that &k become large and the five-branes are closely spaced corresponds to the
generalized Janus configuration with arbitrary y-dependent 1, which is related to the Yang-
Mills coupling 7 = % + % = a+ 47 De*¥ with a and D being constants. Actually in the
brane realization, the @ and D could be determined by the brane configurations [[J]. For
example, for the configuration of D3’s ending on NS5 branes one has a = —4wD. However
there are no such constraints in Janus field theory. In this sense, Janus field theory seems
to be more general than the brane configuration. However such brane configuration may
help us to understand physics of Janus configuration.

In this paper, we try to study several aspects of the Janus configurations with theta
term. We first study its moduli space and BPS configurations. We show that unlike the
Janus configuration without theta term there is no nontrivial vacuum. We obtain the BPS
soliton equations by imposing more projective conditions on the supersymmetry parameter
in the field theory. We figure out the brane picture corresponding to half BPS soliton, which
requires the introduction of (p,q)-string extending along one of transverse directions of D3-
branes. It turns out that the half BPS soliton could be taken as modified dyon and 1/4-BPS
soliton could be taken as modified string junction. We discuss the half-BPS solution in the
sharp interface case. Finally we turn to construct generalized Janus configuration with less
supersymmetries and find that there is no nontrivial vacuum.

The organization of this paper is as follows. In section 2, we give a brief review of Janus
field theory including a spatial varying theta term, and then discuss its vacuum structure.
This will help us to set up our convention. In section 3, we study the BPS solutions of
generalized Janus configuration and their corresponding brane configurations. In section
4, we construct the less supersymmetric Janus field theory. We end with some conclusions
and discussions.

2. Janus configuration with theta-angle and its vacuum

The four dimensional N = 4 supersymmetric Yang-Mills theory allows a deformation which
result in a field theory with a spatially-dependent coupling constant and half supersymme-
tries [, @. The deformed field theory is called Janus configuration. The Janus configuration
has been extended to include a spatially varying 6 angle [[J]. We start from a brief review
of this so-called generalized Janus configuration. The unperturbed N = 4 supersymmetric
Yang-Mills theory could be written in ten-dimensional notation

1 1 —
I= /d4x—2Tr <§F1JF” - z’\I'FIDI\I'> (2.1)
e
and the supersymmetry transformations are
0pAr = el (2.2)
1
50U = —§FIJF]J€ (2.3)



where I,J = 0,1,2,---,9, Ay = AT, Te(T,T}) = —bu,/2, Ti = —T,. The gamma
matrices I''’s are in Majorana representation, where {I'/, '/} = 2¢/7 with signature (— +
+...4). The gaugino field ¥ and the supersymmetry transformation parameter e are
Majorana-Weyl spinors, obeying I'e = ¢,T'W = U, where I' = I'gi2._g. All the fields are

defined in four-dimensional spacetime z°, 2!, 2% 23. Without losing generality, we pick

3 on which the coupling constant and f-angle depend.

up one spacial coordinate y = =
The components of 10-dimensional gauge fields Ay with I = 4,5...9 correspond to six
four-dimensional scalar fields X;. In this case, the notations Fy;, Fj,; mean that Fr; =
(X1,X],Fur = DXy when I,J = 4,5...9. For simplicity, we use the ten-dimensional

notations F7; in the above sense. The theta term is

1
Iy = ~ 3.2 /d43:9(y)5“”aﬁTrFWFag
1 db 2
_ W d3xdyd_yguu>\Tr <AM8VA)\ + gAMAVA)\> . (2.4)
where 0123 = —1, 012 = 1

The original Janus configurations without theta angle which have eight supercharges
is given by modifying the action and supersymmetry transformation such that half of su-
persymmetries are preserved. In this case, the supersymmetry transformation parameter e
does not depend on y. However, € should depend on y in order to add the theta term. Since
the supersymmetry transformation is global, any two unbroken supersymmetry transfor-

1

mations should close into a translation along 20, 2!, 2. This requires

d
d—yzrﬂg =0, p=0,1,2, el3ec=0. (2.5)

There are also other global symmetries. The original symmetry SO(1,9) is broken to
W =S0(1,2) x SO(3)x x SO(3)y. The SO(1,2) is the Lorentz symmetry of spacetime in
20 2t 22, The SO(3)x acts on X4, X5, Xg while the SO(3)y acts on X7, Xg, Xg. Taking
both the global symmetries and dimension analysis into account, we can make the following
ansatz for the modified supersymmetry and action transformation.

—1
Hv = 5 (M Xa(s1T456 + s2l'789) + TP X, (t1T 456 + t2l'789)) € (2.6)
i
I' = /d%ng"‘I’ (alg12 + BT456 + YI'789) W (2.7)
1 2
I = /d‘%g <ua’“’>‘Tr<Au8,,A>\ + gAuA,,AA>
+§€“bcTrXa Xy, X.] + %aWTrX,,[Xq, X,,]> (2.8)
_ 4 r a T
I”/ = /d zTr (@XGX + @XPXP> (29)

where p,v, A\ =0,1,2,a,b,c = 4,5,6,p,q,7r = 7,8,9 and ¢ are antisymmetric tensors nor-

2 _ 456 _

malized to %! €9 = 1. All parameters depend on y. Using the condition that



the Lagrangian preserves half of supersymmetries, we can obtain the following equations:

d
d—; = ar()lgge (2.10)
€((s1+20)B1 + (52— 2)Ba + ) = 0 (2.11)
€((t1 —28)B1 + (t2+2y)Ba+q) =0 (2.12)
€(4aBy +26B1 +2yBy —q) =0 (2.13)
u=—4a, v=-40, w = —4y (2.14)
e((—28" — 4va)B;y + (29 — 4Ba)Bs) = €A (2.15)
2
oavagat Ly 210
2
F=—-XA+23%+29% - 5 q, (2.17)
where
By = I'4s6789, B1 = I'sas6, B2 = I's7sg, (2.18)
d 1
2
— e —— 2.19
1= (2.19)

and ' means d/dy. One can take g¢,de/dy and the parameters «, 3,7, s, t;,u,v,w to be
of first order, while 7,7, the second derivatives of €2, ¢, the first derivatives of the other
parameters, and the quadratic expressions of the first order quantities to be of second order.
Note that the first five equations come from the conditions that the first order variation
of action under supersymmetry transformation vanish, while the vanishing of the second
order variation leads to the last three equations. Introducing another parameter v, we set
Y = 2a. We can solve the equation (R.10)

€= <COS % — sin %BO) €0, Bgeo = €p, (2.20)

where ¢( is a constant spinor. The solution is equivalent to impose the following projection
condition
(sinyB1 + cosyBa)e = ¢, (2.21)

which is the projection condition on € representing half of supersymmetries. The € also
satisfy the requirement of closure of supersymmetry (R.5) if €I?¢y = 0. The equations

from (R.11) to (R.15) are equivalent to the projection condition (R.21). So it is easy to

obtain the following results

Y =2a, f=- i , = v , L~ Dsin 21 (2.22)
2cos 1 2sin 2
u = —4a, v = —40, w = —4v, 0 = 2ra + 872D cos2y  (2.23)
,sin? 4 ,cos? 1)

s$1 =21 . so=20'sine, t; = -2 cost), to=—2 (2.24)

siny

Since § and 1/e? can be expressed in terms of the usual complex coupling parameter

cos 1)

T = % + % which takes values in the upper half plane, we have 7 = a 4+ 4w De%¥.



To obtain the vacuum structure of generalized Janus configurations, one may find the
moduli space preserving full supersymmetries. However, the supersymmetry transforma-
tion parameter € depends on y. It turns out to be more convenient to use the constant
spinor €y. All of the projection conditions on € can be reexpressed in terms of the projection
conditions on the constant spinor €5. We can use ¢ as the supersymmetry transformation
parameter instead of €. The total supersymmetry transformation on gaugino is

-1
oW = — (TrsF" + T X, (s1Tas6 + s20'789) + TP X, (1T 56 + t2l'7s9)) €. (2.25)

Note that after using (R.24) and the projection condition (R.21), we have

1 cos )’
B (T Xq (511456 + s2'789) ) € = F3aX“(cosZZ;)) €
1 (sine)’

— ("X, (t;T toT —r¥rx, L
2( p(t1Tas56 + t2l'7g9)) € P Sin ¢ €,

where a = 4,5,6, p=17,8,9. In order to make the expression simple, we denote

D3 (X, cos ) Ty = D3(X,sin)
’ P sinyy

Let us consider the moduli space of the theory. We can take A, = 0 and six real scalars

F3, = (2.26)

cos

only depend on x3. The vacuum configurations preserve all supersymmetries. With the
above ansatz, the gaugino transformation (2.2§) becomes

0W = —e VP/2 ((—(X,cos1)' S + (Xpsin ) X — [X4, X,]5EP) Boeo
+ (tan (X o8 1) S+ e[ Xy, X |5 /2-+cot (X, sin ) TP + P77 [ X, X, ] /2) 60)
=0 (2.27)

where e%6 =1, £™9 =1, 2%¢ = —gabeT,, 25P = —ePI"Lq,.

The Majorana-Weyl spinor in 16 of SO(1,9) can be decomposed as Vg ® V5, where Vg
transforms in the irreducible representation 2 ® 2x ® 2y of SO(1,2) x SO(3)x x SO(3)y
and V5 is the space acted by SL(2,R) which is generated by By, Bi, Bz. The X% are three
generators of SO(3)x which acts on the space 2x and XP are three generators of SO(3)y
which acts on the space 2y. The fifteen matrixes 2%, P, ¥%YP are anti-Hermitian and
traceless acting on 2x ® 2y. As the trace of the product of arbitrary two different matrixes
vanishes, they are independent matrixes acting on 2x ® 2y. And since B¢y = ¢y and
By Byeg = —e¢p, so €y and Bgeg are two independent vectors in the space V5. Therefore the
vanishing of the gaugino supersymmetry transformation leads to

(Xgcosyp) =0, (Xpsing) =0
[XayXb] =0, [Xp7Xq] =0, [XaaXp] =0, (228)

with the solution

a D
X(],: C Xp: .p

m— (2.29)



Figure 1: A system of N parallel D3-branes intersecting successive NS5-branes. A generalized
Janus configuration with an arbitrary y-dependence of the gauge coupling can be obtained as a
limit of this.

where Cy, D),’s are constant matrices commuting with each other. This is the only vacuum
we can have. The brane configuration is picture 1. Like the case of N'= /A SYM, the
constant Cg, D),’s characterize the transverse positions of D3-branes.

One can also study the vacuum directly from the energy functional

1 — — —
H = /ds:l,'e—zTI‘((Sln ZZ)F34 — F56)2 + (SiHTJZ)F35 — F64)2 + (sin¢F36 — F45)2
+(cos pF37 — Fg)? + (cos ¢ Fsg — Fyr)® + (cos1pFzg — Frg)?

2 2 !
#Ep) + (G st O TH XX, X))+ 5 cos V(XX o))
1 / a 1 / '
+Tr( ¢ tan p X, X — <1 cot X, X7 ) . (2.30)
e e

The energy is bounded by the boundary term. If the boundary term vanishes, the classi-
cal vacuum configurations satisfy the above equations (R.2§) which we obtained from full
supersymmetry conditions of vacuum configurations. Thus we can conclude that there is
no nontrivial vacuum for Janus configuration with theta term. This is quite different from
the case without theta term, which has a nontrivial vacuum characterized by a Nahm-like

equation.

3. BPS solutions and brane configurations

In this section, we try to obtain the BPS solutions which preserve part of the super-
symmetries in generalized Janus configuration. This require €g to satisfy extra projection
conditions which are also compatible with the original condition Bsey = €¢y. The possible
projection conditions for supersymmetric parameter € are:

Plggpe() = «e€g, P0a60 = 560 (31)



where o = +1, 8 = 1. Without losing generality, we just set p = 7,a = 4 in the following
discussion. In this case we have the following identities:

[oggeo = —aeg, Tiaseeo = Beo, I'ssereo = —aBey, I'sesoco = afbeg (3.2)
Boeg = —T'o123€0 = Bl1231€0 = —T'au56€0 = —al'oreg = —aBl47¢€0 (3.3)
= affl'3489€0 = —al'g39€0 = Bl o356¢€0 (3.4)

If we impose one projection condition in (B.]) then we get 1/2 BPS configurations. If
imposing both conditions we obtain 1/4 BPS configurations. After multiplying a factor
—(cos % + sin %Bo), the supersymmetry transformation of the gaugino field becomes

I'2(Fiy — FseT 1956 — Frol'1289 + sin ¢ F34T' 1934 — F37 cos YT 1937)€g
+I%3(Fas — cos ¥ Fi7T 1237 + siny F14T 1234 Bo)eo

+T% (cos 1 Fy1 — cos ¢ FarT 1237 + sin ¥ FouT'1234Bo)eo

+(cos v + sinpBy) [T'?(Fi5 + FagT1256)

+T10(Fig — FosTas6) + T8 (Fis + Fagl'asg) + I (Fug — FasT'12s9)] €0
+T(Foy 4 cos Fial™ + sin oy Fy7T07 Bo)eo + D% (Fog + cos 1 Fp T
+ sin o Fy7To7 Bo e + I (Fos 4 cos ¢ F 34T + sin ¢ F37T7Bo)eo

+T% (cos ¢ Fos — sinFyrT47Bo)eo + I'% (cos p Fos — FysT™

— sin Y F'360356 Bo)eo + I (cos ¢ Fps — FiugT™* + sin 1 F'35 o356 Bo )€
4T (cos Y Fyy — FyrI + sin ¢ FouT47 By g + T8 (cos i Fyg — FusT
— sin Y F'39L 0389 Bo)eo + I'%(cos ¢ Fpg — FioT'™* + sin 1y F'sslosse Bo o
+T%8(Fyg + Feol'seso)eo + I°%(Fg — FesI'seso)eo + I (cos 1/ F's5 — Ferl'sser
— sin ¥ FoTogs6 Bo)eo + 1% (cos 9/ F's6 + FrrT'ss67 + sin 1 Fysosse Bo ) eo
+T% (cos ¢ Fgs + Frol®™ — sin ) FogTozs9 Bo)€o

+T139(cos 1 Fsg — FrgI3™ 4 sin o FygTo3s9 Bo )€o

The gaugino transformation should vanish for BPS configurations. Imposing projection
condition (B.1]), 6¥ = 0 if all terms vanish separately. This leads to the following nontrivial
part of 1/4 BPS equations:

Fio — BFs6 + aFgg + Bsin)Fgy — acosFg; = 0
Fy3 + BsinypFiy — acospFi7 =0, F31 + BsinpFoy — acospFyr = 0
Fis — aFsg =0, Fig+aly =0
Fis + Bly =0, Fig— BFps =0, Fsg—afFgs =0
Fss +aflFgg =0,  Foir +asinyFi7 + fcosypFiy = 0
Foa + asingFo; 4+ fcostpFay =0,  Foz + asingF3; + fcospF3y =
cos YFyy + afsinFyr = 0, cos P Fys — BFys + BsinyFzg = 0
cos Y Fyg — BFys — BsinepFs5 =0, cosyFyr — BFyr — afBsinyFyy = 0



cos Y Fpg — BFus — asinFsg = 0, cos P Fyg — BFu9 + asinFsg = 0
cos Y Fs5 + BsinpFog + afBFgr =0, cospFag — BsinyFos — affFsr = 0
CcoS Qbfgg — asinyFyg + Frg =0, CoS Qbfgg 4+ asinFyg — Frg = 0 (35)
These equations contain unknown parameter @ which depends on y, and seem to be im-
possible to solve.

It is easier to deal with half BPS configurations. The nontrivial part of half BPS
equation with one of the projection conditions I'1237¢9 = aeg and § = 0 is made of

Fio 4+ aFgg — acos ) F37 = 0, Fo3 —acosyFi7 =0

F31 — acosyFyy =0, Fy1 + asinyFi7 =0

Foo + asinyFyy = 0, Foz + asinyFs; =0

Fig — aFyy =0, Fig+aFy =0

cos Y Fpg — asinFag = 0, cos P F33 — asinpFyg + Frg =0
cos P Fyg + asinpFsg = 0, cos P F39 + asinpFyg — Frg = 0. (3.6)

The last two lines of the above equations could be reduced to

Fgg = COS 1/JF78 Fog = aSinl/JF78 (37)
F38 = — COS ¢F79 Fog = OéSiDT,Z)Fw.

One can simplify the equations further by let Xg = X9 = 0, then the first six equations
are the dyon equation when ¢ is a constant. Although generically 1 is not a constant in
the Janus field theory, the above equations could be organized as

D3 X7
sin v
D3 X7
sin 1)
where X7 = siny Xy, E; = Fy;, B; = %eiijjk.Q One may take them as modified equations
for dyons, as we will show soon. They are quiet different from the monopole equations

B; =acosyD; X7, 1=1,2, B3 = acos

B, = —asinyD; X7, 1=1,2, FE3=—asiny

(3.9)

in [[[]. Tt would be interesting to solve these equations. We will discuss the solution in the
sharp interface case.

The trivial part of the BPS equation involves the equations on X}, 56, which requires
them to be constant. For simplicity, we set X456 = 0.

Let us consider the energy functional in the case that the six adjoint scalars except X7
vanish. The energy functional takes the following form

1 — —
H = _/d%gﬁ((& —acot YD X7)* 4 (B; + aD; X 7)?)

+a / d?’x(‘)iTr<%(cot VB X7 — EZ-Y7)> (3.10)
(&

2This is notation for the magnetic field strength without confusing with the previous notation for gamma
matrix products.



To get it, we have used the Gauss law
1 P

It is obvious that the energy functional is in consistent with the BPS equation we obtained
from supersymmetry analysis, if the boundary term is ignored.

Since it is hard to solve the half-BPS equations, it is useful to recall the BPS soliton in
usual field theory. For simplicity, let us assume the gauge group to be SU(2). The adjoint
scalar is written as ¢ taking vacuum expectation value ¢?¢® = e?v? in the spatial infinity
where SU(2) is broken to U(1). In the traditional field theory, the coupling is a constant
and the magnetic charge @),, is related to the winding number

4n,,

o1
Qum = 2 / , A4S Tr(9B:) = (3.12)

e
where n,, is the winding number of scalar field configuration. However when the coupling
is spatially varying, the relation between magnetic charge and the winding number is not
clear. For the electric charge,

Qo = —2 / 2 dSZTr Ei, (3.13)

Sint
we have to take into account of the Witten effect [[[5] in the presence of the theta term.

The generator that generates the gauge transformations around the direction ¢% is 5AZ =
(1/ev)D,¢%, whose corresponding Noether charge is

Ne = /dszna%fé/lz

(0o As.)
N /fnf a5 Tr( a EEM + 4m2ev Bi¢>
Qe
~ sz (3.14)

by using the Gauss Law. n. must be an integer, since 27 rotation is not a transformation
and leaves the state invariant, giving e??™ = 1.
In our case, we can identify X, as the scalar field ¢ above. Then using the correspond-

ing BPS equations (B.9) and 1/e* = Dsin2¢,0 = 2m(a + 4w D cos 21)), one can find
Ne/Nm = a+ 47 D. (3.15)

We will show that the similar relation also appears in the discussion of brane configuration
of BPS solition as (p, ¢)-string. This suggest n. and n,, should be identified as the charges
carried by (p, q) string on D3-brane worldvolume.

For Janus configuration with spatially varying coupling and theta term, one has to
carefully define the electric and the magnetic charge of the BPS soliton. Let us take the
following definition, which could be reduced to the usual ones consistently:

m_2/d3x8Tr< ! BX7> Qe = — /d%@ﬁ( ! EX7> (3.16)



The energy of half BPS soliton solution is bounded by
2
H = ‘ /dgl‘aiTI‘<e—2(COS ¢BZX7 - SIHZZ)EZX7)>‘ (317)

with equality if and only if the BPS equations are obeyed. This inequality looks different
from the usual BPS relation between the mass and the charges. However, if we consider a
simple case with v being a constant, then we have

M > v|cos Q@ + sin Q|
> 0V/Q2 + Q2. (3.18)
In the above relation the equality is saturated if the BPS equation is satisfied and tan ) =

Qc/Q, which does hold taking into account of the relations (B.14), (8.12), (B.1§) and the
expression of e and 6 in terms of 1. This suggests that the half BPS solution is actually a

dyon. For a dyon with charges (p,q), M is proportional to |p+ ¢7| with 7 being a complex
coupling constant, and

Y+ %w = arg(p + q7). (3.19)

This sounds somehow strange since v is an arbitrary function in Janus configuration.
However, as we will show in the discussion on brane realization of BPS soliton, in order to
have half BPS configuration, the possible (p, q) string is very restricted and indeed ()
must be respected.

Here seems a puzzle. When 9 being a constant, the Lagrangian of Janus configuration
reduces simply to the one of N’ = 4 super-Yang-Mills theory. And there should be various
possible dyonic solutions in the theory. At first sight this is in contradiction with the result
we just obtained. However, note that even when 1) being a constant, we have extra projec-
tion condition on supersymmetry parameter and the field theory has actually half of the
original supersymmetries. The extra projection condition leads to stringent constraints on
the possible BPS solitonic solutions. In the brane picture, the extra projection condition
comes from the presence of 5-brane system. The constancy of ¢ along the whole y corre-
sponds to the case the ¥ being the same on two sides of 5-brane system. In this case, the
explicit solution of BPS soliton solution is the same as the one in N' = 4 SYM with the
dyon charges being relatively fixed.

Next let us consider a little more complicated case. We assume that ) take different
values on two sides of 5-brane locating at y = 0. In this so-called sharp interface case,
changes from one constant value to another one at the interface, namely

), y>0
Y(y) = {wz, y <0, (3.20)

Similar to [[L] one can still solve the BPS equations in the abelian limit that the nonabelian
core size vanishes. In the abelian limit, the question is simplified to the one in traditional
electrodynamics. However, one has to be careful since we are discussing the dyon which
induce both point-like electric and magnetic sources. In fact, from BPS equation, the fact

— 10 —



B;/E; = — cot v suggests that B; and F; cannot be both continuous across the interface
since v is different on two sides. In the following discussion, we just focus on the magnetic
field and the electric field is given by E; = —tany¥B;. For a single dyon with one unit of
magnetic charge at y = 39 > 0, we have?

(z1,22,y—y0) + cot? 1 —cot? 2 (%1,22,¥+Y0) y >0

~ . r3 cot? 11 +cot2 o rs ’
Bi = cot D X7 = 203/2 26&2 P2 (z1,%2,y—0) <0 (3'21)
cot2 11 +cot? o i Y
where r4. = 22 + 22 + (y F yo)?. The scalar field is
1 ~ 1 cot2 1y —cot? 1 1
X7 =io3/2 { sin 1 (0 - o hire cot?lwl(cot12 et Y >0 (3.22)
sin 1 (U T cot2 g1 Fcot? o H)’ y<0

where 0 = /5 5120151% v and v is a constant being related to X7/e at positive infinity. It is

easy to see that the total magnetic flux is 47 at the spacial infinity. And the charges of

Oy = 47(cos 1y cot? by 4 cos g cot? hy) 2D sin (3.23)
me cot ¥F + cot? by cos 1 '

0. = 47 (sin 1y cot? by + sinhg cot? ¥hg) [2D siny (3.24)
< cot 1/1% + cot? 1y cos Y1 '

when ¢ = 19 we have Q,,, = 47/e which is the charge of a single monopole. To obtain

the dyon are

the above solution, one needs to take into continuity condition on various fields. Here we
take Fyi, Foo, Fio and X7 to be continuous at the interface. Obviously the scalar field X5
is not continuous.

Another simplification is to let A4; = 0, Ay = X7 and X789 depend only on y. This
leads to the following equations

Fgg = COS ¢F37 (325)
1 _
For = F 3.26
T sl (3.26)
1 _
Frs = Fq9. 2
S sl (3.27)

One can also obtain the energy functional in this case

1 — _
H = — /d3aje—2TI‘(F89 — COs 1/JF37)2 + (Fog + sin ¢F37)2

+(cos 1 Fpg — sin 1/1739)2 + (cos Y Fsg — sinpFpg + F79)2
+(cos P Fog + sin ¢ Fsg)” + (cos ¥ Fsg + sintpFos — Frg)?

+ <€_12 (2 COS ¢TI‘(X7[X8, Xg] — Qﬁl cot ZZ)TrXpo — 2F0377))> (328)

3For a realistic dyon with charge (p, q), the electric and magnetic field strength is simply the multiple of
the ones for one unit charge in the Abelian limit. Therefore, we just focus on the case with one unit charge.
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by using the following equation of motion
1 1 1
Dj (—2F03> + [X&—ZFos] + [Xg, —2F09} = 0. (3:29)
e e e

Similarly it is in consistent with the BPS equations. One can also obtain the 1/4 BPS
equation from the energy functional analysis which is similar to the above case. It contains
some boundary terms and square terms which are left hand of the equations in (B.5).

To solve the BPS equations, without losing generality, we can assume the gauge group
to be SU(2) and make the following ansatz,

X7 =—ifi(y)o1/2, Xs=—if2(y)oa/2, Xo=—if3(y)os/2, (3.30)
with o;’s being Pauli matrices. The above set of equations could be reduced to

8y(f3 sin 7/’)

cos Y0y (f1sin) Fufs = cos Y0y ( fosin)
cossiny

Fafs = sin 1) ’ sin 1) ’

fife= (3.31)

If ¢ is a constant, the above equation could be solved by a proper rescaling of f3(y). The
solutions are

Feng(F(y — vo))

| o Yo)
Ay ks Foyo) = == et = o0)
' B Fdnk( (v — o))
Felys ks Foyo) = =m0
f3(y; K, Foyo) = — ik

sni(F(y — yo))

where sny, cny, dny, are Jacobi elliptic functions with k being elliptic modulus and F' > 0, yg
are arbitrary constants. However if ¢ is an arbitrary function of y, the equations (B.27)
become very difficult to solve.

Another projection condition I'ey = Bey and o = 0 leads to another half BPS con-

figurations
Fig — F56 + 3sinpF34 = 0, Fy3 + fsingpFiy =0
F31 + BsinyFyy = 0, For + BeosyFiy =0
Fyo + BcospFyy =0, Foz + BcospFgy =0
Fi5 + BF2 = 0, Fig — BF2 =0
cos Y Fys — BFys + BsinyFsg = 0, cos Y F35 + BsinyFyg = 0
cos Y Fog — BFus — BsinyFss =0, cos P F 35 — BsinFys = 0. (3.32)

The discussion is very similar to the former case.
Let us return to the 1/4-BPS equations. Since the projection conditions only involve
two directions 4 and 7, one may simplify the discussion by set X5 = Xg = Xg = X9 =0

- 12 —



such that the equations could be rewritten as

D; X, = —B(cosYE; +sinyB;), i=1,2
D; X7 = a(—sinyE; + cos¢B;), i=1,2

M — _ﬁ(cos¢E3 —I—SIHT,Z)Bg),
sin Y
D3(X7si
3(_7721“#) = a(—siny Es3 + cos ) Bs),
sin
DoXy = DoX7 =0, [X4,X7]=0. (3.33)

When v is simply a constant, the above equations are the ones for BPS string junctions
in SYM [[[6, [[]. Therefore the above equations could be taken as the ones for BPS string
junction in Janus configuration. It would be interesting to solve these equations.

Next, we will analyze the corresponding brane configurations of the BPS solutions.
The brane construction of the theory is D3-brane ending on five-brane. D3-brane extends
along the 0123 directions. There may be two groups of five-branes. One of the (p, q) five-
brane extends along 012456 directions and the other one (p/,¢') extends along 012789. If
one takes €; and €5 as the supersymmetry parameters of the left and right move modes in
type IIB theory, then the unbroken supersymmetry for D3-brane is just

€2 = Lo1zzen (3.34)

The ¢, is identical to € in the above Janus field theory. Using (R.20), (B.21)), we also have

€ = (cos % — sin %Bo> €9, (sinyBy + cos®Bs)er = € (3.35)

As we have argued before, the projection condition on €; can be transformed to the pro-

jection condition on €y. We can write it as [Vey = 9. To be compatible with the original

projection condition Boey = €g asks that IV and B must commute. But if we want to

know the brane configurations of the corresponding BPS configurations, we should know

the projection condition on €. Let us consider a (p, ¢)-string extended along Om directions.
The supersymmetry condition for (p, ¢)-string is

€1 = —I'(coste; — sintey) (3.36)
where I' = T, and t = arg(q7+p). According to (B.34), it is equivalent to e; = —I'(coste;+
sintBge;) = —T'e'Poe;. Using (B.3), we express it in terms of ¢ as follows

o = —e¥Bo/2etBoe—vBo/2¢ (3.37)

If the (p, q)-string extends along 1, 2 or 3 directions, it will be dissolved in D3 branes
and form a bound state [I§ whose supersymmetry conditions are different from (B.34). In
this case, one has to find a noncommutative field theory for Janus configuration [[[4]. For
the (p, ¢)-string extending along other directions, we have I'By = —ByI', and then

o = —Det=¥PBoey — —(cos(t — )T + sin(t — ¥)'By)eo. (3.38)
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The compatible condition leads to
cos(t — 1) =0, if 'By = —Bol’ (3.39)

with the solutions

= 2, —I'Bgeg =
t=v+m7/2, 0€0 = €0 (3.40)
t =1 —m/2, I'Byey = €
or
sin(t —¢) =0, if 'By = BoI', (3.41)
with the solutions
t =1, T'eg = —¢g
3.42
{tzw—F?T,FEQ:GO ( )

The relation of ¢ and 1 can determine p/q in terms of a, D or vice versa. For example
t = 1) is equivalent to
siny  Im(p+qr)
costy  Re(p+qr)’

which leads to p/q = 47D — a by using 7 = a + 47 De*¥. Similarly ¢ = ¢ + 7/2 leads to
p/q=—a—4nD.

The above analysis is for the general case. Now let us be more specific. For (p, ¢)-string
extending along 04 we have I' = T'gy. Since ['gy By = Balgy satisfying (B.41)), we have the
corresponding solution (B49) that ' = ¢q for t = ¢ or '%eq = —¢q for t = 1 + 7. The
constraint for the charge is

(3.43)

p/q=4rD — a. (3.44)

Here the projection condition is exactly the same one in (B.])) for a = 4 in generalized Janus
configuration. Thus the half BPS solution (B.33) we obtained above could be realized by the
brane configuration with (p, ¢)-string extending along 04. The discussion for (p, ¢)-strings
along 05 and 06 cases is similar.

The thing is actually a little subtler here. In the brane picture, the integration con-
stants @ and D are determined by the background branes. For the generalized Janus con-
figuration, one can consistently add 5-branes along 012456 or along 012789 or both [1]. To
be consistent with (B.44)), generically only 5-branes extending along 012456 are allowable.
This brane picture may help us to understand the equations in (B.32). For example, the
fact that (p, ¢)-string along 04 looks like dyon from the point of view of D3-brane extending
along 0123 explains the modified dyon equations in (B.39). And the fact that (p, ¢)-string
realize the instantons in transverse directions 1256 of 5-branes is encoded in the fourth line
of (B3).

On the other hand, for the strings along 07 case the projection condition is I'1937€9 =
+eg as g7 B2 = —Bal'g7 and the charges has to satisfy p/q = —a — 47D, which asks the
5-branes to lie along 012789 consistently. In this case, the parameter ¢t = ¢ + 7/2 matches
exactly with the relation (49) and the charge ratio is reminiscent of (45). This is exactly in
match with the half-BPS solutions in generalized Janus configuration obtained by imposing
one of the projection condition in (B.]) with p = 7. The string orthogonal to D3 branes

— 14 —



Lo T e e o
............... n
n N-1
1
T Xm

X

3

@, @2 @3 Pn-1 PN

Figure 2: We cousider n (p, q)-strings, with worldvolume xg, x,,, and with D3-brane impurities
inserted at particular points x,, = ¢,.

worldvolume realize a dyon in D3 branes. For the strings lie along 08 or 09, we have the
same picture.

In the above, to find the BPS brane configurations, we discuss the possibility of adding
(p,q)-string configuration in the original Janus brane configuration, without breaking all
the supersymmetries. It turns out that to keep half supersymmetry, the strings could lie
along Om, with m being one of transverse directions. The string can come all the way
from the infinity and end on the D3-branes. From the D3-brane point of view, the strings
looks like a dyon. However this kind of configuration corresponds to the spiky string [[[J]
in the presence of 5-branes instead of the BPS solutions we discussed in generalized Janus
configuration. In our case, the right brane configuration is that there is one D3-brane siting
far away from other N D3-branes along the direction which the string lie. This corresponds
to Higgs mechanism which break SU(N + 1) to SU(N) x U(1) and give the mass to the
corresponding scalar fields. Generically, the D3-branes can sit at different places along
direction ™ such that the original gauge group is further broken. The corresponding
brane configuration (see [R]) is shown in figure 2.

4. Less supersymmetry Janus configurations with theta angle

Less supersymmetry Janus Yang-Mills theory without theta angle have been considered
in [{, [1. We can use the similar technique to investigate the case with theta angle. We
can impose additional project condition to the susy parameter ¢y as long as the conditions
are all consistent. In order to make the expression simple, we use the following notation:

Bo1 = I's456, B11 = T'34g9, Ba1 = I'3s97, Bs1 = I'se7s, (4.1)
Bi2 - BOBila 1= 07 17 27 3

They satisfy the relations Bg = —1,B-21 = Bl-z2 = 1,ByB;1 = —B;1By. The projection

(]
conditions for 1/4 supersymmetry configuration which have only two supercharges are

Biseg = hjeo, (4.3)
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where h; = £1,7 = 0,1,2,3. The compatible conditions require hohihohs = —1. In fact
there are only three independent constraints. They are equivalent to

(sinyBj1 + cos B )e = hye. (4.4)

Similar to [[[2] we can also analyze the brane configuration of the fivebranes that lead to the
above supersymmetries. For (p, ¢)-fivebrane extending along the 012456 directions imposes
a constraint

€1 = —F012456(Sin te1 + cos tEg). (4.5)

If existing both types of branes, then we have
€1 = —(—costBi1 + sintBia)eq, (4.6)

where t = arg(q + pr). Compared with (f.4), we find t = ) & m/2. It leads to a constraint
on the charges that is ¢/p = —a — 4w D. Other projection conditions correspond to (p, q)-
fivebranes extended along 012489, 012597 or 012678. Their constraint on charges are the
same so that they have the same charge for fivebrane extended along these directions.
However the fivebrane also can extend along 012789, 012567, 012648 or 012459 and they
have the requirement ¢ = 1 or t = 1 + w which lead to the same condition of the charge
q/p = —a+4nD.
The perturbed supersymmetry transformation could be

~1
O = G X,

1

(sinl'3Bi1 + siol'sBi2) + I'Pi X, (tinI'sBi1 + tiol'sBig))e,  (4.7)

where a9 = 4,5,6,a1 = 4,8,9,a5 = 5,9,7,a3 = 6,7,8,p9p = 7,8,9,p1 = 5,6,7,p2 =
6,4,8,p3 =4,5,9 and C;’s are constants. The ansatz for perturbed action is

1 _
I = /d4l‘gT1"\If (OéF012 + Ci(ﬁiF:;Bﬂ + %FgBiQ)) \If, (4.8)
" 4 1 VA 2
I"=|[d ) ue" Tr A“&,A,\—l—gA“A,,A)\

3
Yi _aibic; Wi _pigiri
+Z <Ci§&7 biciTr X, [ X, , Xe,] + Ci?&“p BrTr X, [Xqi,Xri]>>, (4.9)
=0

1
7" — /d4l‘T1"(e—2TmnXan), (4.10)
where ¢ are antisymmetric tensors normalized as €96 = 489 = 597 = 678 — T8 —
g7 = 648 — 459 — 1 There are undetermined parameters «, Gj,i, U, Vi, Wi, F'mp i

the perturbed action, which should be determined by supersymmetry. Since the zeroth
order and first order terms under supersymmetry variation are linear in Cy, C1, Cs, C3, the
terms containing C; vanish separately. Then the equations for the parameters are similar
to (2.10)—(R.14), where By, B, 3,7, v, w become By, B2, 3;, i, Vi, w;. So we have similar
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solutions for the undetermined parameters

/ Y Y’
Y =2, Bi = _himy Vi = him, (4.11)
u = —4a, v; = —40;, w; = —4~;, eiQ = Dsin2y, (4.12)
si1 = 2hi¢’sci§:$, $i2 = 2ht) sin ), (4.13)
ti = —2hi costh,  tip = —2hil! cos” ¢ (4.14)

sint)

However there is an additional constraint for C; that is ). C; = 1.

The second order variations of the action come from three parts. The first part is
the perturbed modified supersymmetry transformation of I’, which will be denoted as
51I'. The second one is from ;1 which contains both the first order and the second order
variation parts. We denote the second order variation part as d1|2. The last one is from
the unperturbed supersymmetry variation of I"””. Their expressions are the following

1
51[/ = —i/d4x—2 TreC; ((Sz’lBil + SigBig)PaiXai + (tilBil + tigBig)FpiXpi) v,
&

1d
0llp = —i/d4:1:Tr <<% + ——) (€C;(si1Bin + 82‘232‘2))) [ X, ¥
. 4 q 1 d _ .
—i [ d*2Tr (| == + = — | (€Ci(tia Ba + ti2Bi2)) | T? X, V,
Yy
7
Sol”" = / d4xgrmnE(I’an + T X))V, (4.15)

Using the identities ({.4), ({13) and (f:14) and requiring the second order variation of
action under susy transformation vanish, we can determine the parameter r,,, and have
the following form of I"”

1
" = 57 / d'z (29 + (2¢/ tany)’) Tr ((Co + C1) X7 + (Co + C2) X?

+(Co + C3)Xg + (C2 + C3) X7 + (C1 + C3) X5 + (C1 + C2)X3)
+ (20 = (29 cot9p)') Tr ((Cy + C3) X + (C1 + C3) X3
+(C1 + C2)XE + (Co + C1) X7 + (Co + C2) X5 + (Co + C3)X3)
pr? Pr?
-2
cos?¢  sin?p
+(Co + C2)(Cr + C3)(XE + X3) + (Co + C3)(C1 + Ca)(X§ + X5)). (4.16)

>Tf((00 +C1)(Ca + C3)(X3 + X7)

The detailed calculation is given in the appendix.

Similar to the case studied in [f], [L], there is enhanced global symmetry SU(3) with
1/4 supersymmetry when Cy = C; = Cy = C3 =1/4. For Co = C; =1/2, Cy =C5 =0
the half supersymmetric configuration has enhanced global symmetry SO(2) x SO(2).
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With the same method of obtaining eight supercharges vacuum structure, we can
analyze the vacuum structure of half supersymmetric configuration. Without making con-
fusion, we take the following notation:

. . Co-C: £ D3Xiys
Xits = Xpsa(cos ) O FCi(singp) =07 By iy = (cos ¢)Co+ci(s;;¢)1‘co—0i’ (4.17)
Ko = X0 (sin )CotCi 1-Co—Ci  f . _ D3 X6

it6 = Xiye(sine) (cos ) , F3i16= (4.18)

(sin4))Co+Ci(cosp)l—Co—Ci”
where 7 = 1,2,3. With these notations one can simplify the expression of the part action
I + I'"". Replacing the terms %FgaF?’“ + %ngF?’p in I with %Fgap?)a + %ngﬁ?’p and other
terms not changing, the modified action of I is then identical to the original action I + I"”
except for additional boundary terms proportional to /" which vanishes if v’ = 0 at infinite.

Let us consider the case Cy = C3 = 0,Cy + C; = 1. Taking the ansatz X5 = X4 =
0,A, = 0,43 = 0, I's7g9 = I'3567€0 = €o and the scalars only depending on z3, we obtain
the following equations,

sinFsy + cos Y Fyr — Fyg = 0, sin ) Fsg + Fig =0 (4.19)
sin ¢F39 - F48 = 0, sin T,Z)F37 — COS T,Z)F34 =0 (420)
COS 1/JF38 + Fr9 =0, CoS ¢F~139 —Frg=0 (4.21)

Also we can obtain these equations from the energy functional
H = —/d?’fl?eigTr((SiH YFy7 — cosF3q)? + (sintpFss + Fug)® + (sinvpFag — Fis)?
+(sin ¢ Fyy + cos ¥ Fy7 — Fyg)® + (cos1hFas — For)® + (cos ¢ Fsg — Frg)®
+ <e2_2 sin ¢ Tr(X4[Xs, Xo]) + 6—22 cos PTr(Y7[Ys, Yg]))l , (4.22)

where we have omitted a boundary term proportional to 1)’ which is vanishing at infinity
after integration. The energy is bounded below by the boundary term. When the boundary
term vanishes, the minima of the energy gives the equations ([.19)—(fE21)). The trivial
vacuum is to let all X’s commute with each other such that X'4,Xp are just constant.
This is similar to the vacuum of generalized Janus configuration. However, for the less
supersymmetric case, X, have different dependence on 1 for different values of Cp, (.
This means that the vacuum is different for different less susy Janus configurations.

To get the nontrivial solutions of ({.19)-(f£.2])) seems difficult. Since we do not know
the dependence of ¥ on y, we can not solve the equation directly. However they look like
Nahm equations. From the second equation in (), we have X; = X7 + ¢ with ¢ being
a constant. The above equations are simplified as

D3 X7 = (tan )~ [ X, Xg], sine cos D3 Xs = [Xo, X7|, sin¢cosyD3Xg = [X7, Xs]

Now let us prove there is no nontrivial vacuum. Without losing generality, we can assume
the gauge group to be SU(2) and make the following ansatz,

X7 = —iog1, Xg = —igo0a, Xg = —igsos (4.23)
_hy) L — f2(y) . f3(y) (4.24)
sin 2¢’ 2 sin 10 cos 1’ 2 sin 90 cos 1pC1 '
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with o;’s being Pauli matrices. If 1 is a constant, the above set of equations could be

reduced to
fofs=0yf1,  fifs=0,f2, fifa=0yfs, (4.25)
whose solutions are
. _ Feng(F(y — wo))
fl(yvkaFa yO) - snk( (y yO))
~ Fdny(F(y — vo))
k, F =
f2(y7 ) )yO) snk( (y yO))
f3(y; K, Foyo) = — - (4.26)

sni(F(y — yo))

where sny, cny, dny are Jacobi elliptic functions with k being elliptic modulus and F' > 0, yg
are arbitrary constants. The permutations of f1, fo and f3 are still the solutions of the above
equations.

However when generically ¢ is not a constant and depends on y, it is not easy to
solve the equations. Nevertheless let us start from simple case in which ¢ is a constant in
the section (yj,y;+1), where j = 1,2,...n and y; < y;4+1. Namely the y;’s divide the x3
coordinate into n+ 2 sections and 1 (y) is a ladder function. In different section, 1, F, k and
yo can have different values. Note that sny is a periodic function with period 4K(k), where
K(k) is the complete elliptic integral of the first kind. The function K(k) goes to infinity
at k = 1. As the zeros of sng(y) are y = 0,2K (k), the above solutions blow up at the zeros
of the function sni(F(y — yp)). In order to avoid the infinity in each section, one has to
carefully choose the parameters such that in each section sni(F(y — o)) is always positive
or negative. Recall that e% = Dsin 21, so we have 0 < ¢ < 7/2, sint, cosyp > 0. Since
X7, Xg, Xg are continuous functions, then go, g3 are always positive or always negative by
using (f.24). However, this requirement can not be satisfied. In the sections y < y; and
Y > Yn+1 We must take k£ = 1 in order to avoid the infinity. Then the solution becomes

Fcosh(F(y — o))
sinh(F(y — yo))

fHilysk=1,F,y) = fo(y;k =1,F,y0) = —

f3(ysk=1,F,y) = —

(4.27)

F
sinh(F'(y — o))’

(4.28)

so we have ga(y1) > 0,93(y1) > 0 and g2(yn+1) < 0,93(yn+1) < 0 which are contrast to
the above requirement. This indicates that we can not find nontrivial solutions in the case
that 1) is a generalic ladder functions. Since the ladder functions can approach to a general
continuous functions, we can conclude that there is no nontrivial vacuum for general profile
of ¥(y) satisfying 0 < ¢ < 7/2. In the Janus configuration without theta angle, there

is no nontrivial vacuum if there is no point where e? 2

vanishes [[[T]. In the point where e
vanishes, the rescaling scalar need not to be continuous so that there can exist nontrivial
solution. However we do not have such special point that the rescaling scalars can not
be continuous in the Janus configuration with the theta angle. So finally we do not have

nontrivial vacuum.
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Finally, we give the equations for the vacuum preserving two supercharge, correspond-
ing to the case with Cy = Cy = Cy = C3 = 1/4,

sinpFsy — Fsg — Fyg + cos ¢ F37 = 0,
sinF35 — Fgq — For + cospFsg = 0,
sinFyg — Fis — Frg — cosFg = 0,
sin 3y — Fyg — Fgg — cospFyy = 0,
sintFsg + Fig + Fo7 — cosFy5 = 0,
sinyFsg — Fyg + Fy7 + cos ) Fys = 0.

5. Conclusion

In this paper we studied several aspects of Janus configurations with #-angle. We discussed
the vacuum structure of the original field theory proposed in [[J], both from the super-
symmetry analysis and energy functional. It turned out that the vacuum structure is quite
different from the one of Janus configurations studied in [LI], where a nontrivial vacuum
structure had been discovered. We also investigated the BPS solutions of generalized Janus
configurations. These BPS solutions turns out to be the dyons in the field theory, with a
nice brane configuration as (p, q)-strings ending on D3-branes. Finally, we discussed the
less supersymmetric Janus configurations with #-angle and proved that it had no nontrivial
vacuum. We started from the most general projection conditions and obtained the Janus
configurations with two supercharges. We found that in special cases the global symmetry
got enhanced and the configurations had more supersymmetries.

We tried to solve the half BPS soliton solutions in the Abelian limit in the sharp
interface case. It would be important to find the solutions without taking the abelian
limit. And it is also interesting to find 1/4 BPS string-junction solutions. For the case
with more interfaces, the construction of the solution is more complicated.

In the study of the brane configurations corresponding to the BPS solutions of gen-
eralized Janus configuration, we studied the compatible ways to introduce (p, q)-string in
(D3, 5)-brane system. One situation we did not discuss is that when (p,q)-string lie in the
worldvolume of D3-brane, in which case the (p,q)-string and D3-brane would form bound
state [[L§]. This would result in a noncommutative Janus configuration. It is interesting to
construct such a field theory [RI].

In [A-B, BZ), the half-BPS Janus supergravity solutions were studied systematically.
In this case, the global symmetry OSP(4]4) is essential to making ansatz to solve the
supergravity equation. For the less supersymmetric case, the global symmetry is further
broken due to the presence of other 5-branes. It would be interesting to construct the
corresponding supergravity solution [BJ].
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A. Second order variation of the action (4.8)—(4.10)
The second order variation of action can be simplified as following by using ([.13), (£.14)
1
— —z‘/d4xe—2TrE(C,~2z// tan I X, — C;2¢' cot TP X))

1 /

2 in 20
= —2/d4:17— —Ci)" tan YBI' X, + Cip™ cot Y BoI'P' X))
+C,C]h v weF“ZX (—sinyBj1 + cos Y Bj2)
¢/2
—C;Cjh; o el'Pi X, (—sinyBj; + cos ij2)> v (A.1)
sin

and

o . 4 q 1d _ a
011y = —Z/d xTr <<@ + —2d—y>(60i21//tan1/))> %X, v
< d

=—— /d4xC (qv'tan o + (2¢ tan)’) €0 X, ¥
e
+C; (¢ tan 1p)eBeI'™ X, ¥
C; (—QT/J/ cot 1) — (2¢ cot ¢)/) errix, v
+C;i(—y"? cot 1)eBoIP X, W (A.2)
Note that €['* X, (—sin ¢ Bj; 4+ cos ¢ Bj2) are proportion to €(sinyBj; + cos ¢ Bjo)I'* X,
using the project condition ([.4), they are proportion to €h;I'* X,, which is the same form

of (E17). Since susy require 61" + 611" + 611]2 = 0, such terms should cancel each other.
However, we have another form éBoI'* X,.. These terms cancel each other in (A.1)(A.2).
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